Full-waveform Lidar Recovery at Sub-nyquist Rates

نویسندگان

  • Juan Castorena
  • Charles D. Creusere
چکیده

Third generation LIDAR full-waveform (FW) based systems collect 1D FW signals of the echoes generated by laser pulses of wide bandwidth reflected at the intercepted objects to construct depth profiles along each pulse path. By emitting a series of pulses towards a scene using a predefined scanning pattern, a 3D image containing spatialdepth information can be constructed. Unfortunately, acquisition of a high number of wide bandwidth pulses is necessary to achieve high depth and spatial resolutions of the scene. This implies the collection of massive amounts of data which generate problems for the storage, processing and transmission of the FW signal set. In this research, we explore the recovery of individual continuous-time FW signals at sub-Nyquist rates. The key step to achieve this is to exploit the sparsity in FW signals. Doing this allows one to sub-sample and recover FW signals at rates much lower than that implied by Shannon’s theorem. Here, we describe the theoretical framework supporting recovery and present the reader with examples using real LIDAR data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub-Nyquist sampling and detection in Costas coded pulse compression radars

Modern pulse compression radar involves digital signal processing of high bandwidth pulses modulated with different coding schemes. One of the limiting factors in the radar’s design to achieve desired target range and resolution is the need of high rate analog-to-digital (A/D) conversion fulfilling the Nyquist sampling criteria. The high sampling rates necessitate huge storage capacity, more po...

متن کامل

High Resolution Compressed Sensing Radar using Difference Set Codes

In this paper, we consider compressive sensing (CS)based recovery of delays and Doppler frequencies of targets in high resolution radars. We propose a novel sub-Nyquist sampling method in the Fourier domain based on difference sets (DS), called DS-sampling, to create dictionaries with highly incoherent atoms. The coherence of the dictionary reaches the Welch minimum bound if the DS-sampling is ...

متن کامل

Recovery guarantees for multifrequency chirp waveforms in compressed radar sensing

Radar imaging systems transmit modulated wideband waveform to achieve high range resolution resulting in high sampling rates at the receiver proportional to the bandwidth of the transmit waveform. Analog processing techniques can be used on receive to reduce the number of measurements to N , the number of potential delay bins. If the scene interrogated by the radar is assumed to be sparse consi...

متن کامل

A Sub-Nyquist Radar Prototype: Hardware and Software

We introduce a full hardware implementation and demo of a sub-Nyquist radar receiver. Our system demonstrates pulse-Doppler radar transmission and reception at sub-Nyquist rates. Specifically, we sample the received radar signal at 1/20 the Nyquist rate, while still perfectly detecting the targets in the delayDoppler plane. In addition our system filters clutter interference from the sub-Nyquis...

متن کامل

Xampling of Unknown Pulses

We develop sub-Nyquist sampling systems for signals comprised of several, possibly overlapping, finite duration pulses with unknown shapes and time positions. To the best of our knowledge, stable and low-rate sampling strategies for a superposition of unknown pulses without knowledge of the pulse locations have not been derived. We propose a multichannel scheme based on Gabor frames that exploi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013